Hopf Algebra Extensions and Monoidal Categories
نویسنده
چکیده
Tannaka reconstruction provides a close link between monoidal categories and (quasi-)Hopf algebras. We discuss some applications of the ideas of Tannaka reconstruction to the theory of Hopf algebra extensions, based on the following construction: For certain inclusions of a Hopf algebra into a coquasibialgebra one can consider a natural monoidal category consisting of Hopf modules, and one can reconstruct a new coquasibialgebra from that monoidal category.
منابع مشابه
Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.
For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of Hom-tensor relations have been st...
متن کاملMonoidal Categories of Comodules for Coquasi Hopf Algebras and Radford’s Formula
We study the basic monoidal properties of the category of Hopf modules for a coquasi Hopf algebra. In particular we discuss the so called fundamental theorem that establishes a monoidal equivalence between the category of comodules and the category of Hopf modules. We present a categorical proof of Radford’s S formula for the case of a finite dimensional coquasi Hopf algebra, by establishing a ...
متن کاملCosovereign Hopf algebras
A sovereign monoidal category is an autonomous monoidal category endowed with the choice of an autonomous structure and an isomorphism of monoidal functors between the associated left and right duality functors. In this paper we define and study the algebraic counterpart of sovereign monoidal categories: cosovereign Hopf algebras. In this framework we find a categorical characterization of invo...
متن کاملOn the Braiding on a Hopf Algebra in a Braided Category
By definition, a bialgebra H in a braided monoidal category (C, τ) is an algebra and coalgebra whose multiplication and comultiplication (and unit and counit) are compatible; the compatibility condition involves the braiding τ . The present paper is based upon the following simple observation: If H is a Hopf algebra, that is, if an antipode exists, then the compatibility condition of a bialgebr...
متن کاملOn Parity Complexes and Non-abelian Cohomology
To characterize categorical constraints associativity, commutativity and monoidality in the context of quasimonoidal categories, from a cohomological point of view, we define the notion of a parity (quasi)complex. Applied to groups gives non-abelian cohomology. The categorification functor from groups to monoidal categories provides the correspondence between the respective parity (quasi)comple...
متن کامل